Government of India Department of Telecommunication Telecommunication Engineering Centre FA Division Gate No. 5, Khurshid Lal Bhawan, Janpath, New Delhi-110001.

File No. TEC/FA/STD/new/ECR_EP/2020-21

Dated: 17.12.2021

- Subject:Notice for invitation for Sub-DCC & MF meeting of FA divison to be held on 06thJanuary 2022, 11:00AM in respect of revision of Standard for Energy ConsumptionRating and Energy Passport for Telecommunications Products, Equipment andNetwork/ Services.
- 1. It proposed to hold sub DCC and Manufacturer Forum **e-Meeting** of FA division on **06th January 2022 at 11:00AM** through video conferencing to discuss the above mentioned draft document. The details of meeting link is:

Sub-DCC meeting on ECR & EP Thursday, 06 Jan • 11:00 am – 5:00 pm CdoT Meet joining info Video call link: <u>https://vcdot.cdot.in/vmeet/ava-kju-mjr</u>

- 2. The electronic copy of draft standard titled 'Energy Consumption Rating and Energy Passport for Telecommunications Products, Equipment and Network/ Services.' is attached for your reference,
- 3. You may send your comments as per format at **Annexure -A** on the various clauses of the enclosed draft document, if any, in advance by 03.01.2022 at the following e-mail addresses: **ddgfla.tec@gov.in**, **abdul.kayum@gov.in**, **avadhesh.singh48@gov.in**,

sd -(Avadhesh Singh) ADG(FA)

То

- 1. All Sub-DCC/Manufacturer Forum Members.
- 2. Concerned Manufacturers/Vendors/organisations.
- 3. AD (IC.1), TEC for uploading the notice on TEC web site.

P.T.O

ANNEXURE-A

NAME OF (MEMBER/MANUFACTURER)

COMMENTS ON standard on <u>Energy Consumption Rating and Energy Passport for</u> <u>Telecommunications Products, Equipment and Network/ Services.</u>

Clause No.	Clause Description	Comments

मानक दस्तावेज़ सं: टीईसी 74046:2021 STANDARD DOCUMENT No: TEC 74046:2021

दूरसंचार उत्पाद, उपकरण और नेटवर्क / सेवाएँ हेतु ऊर्जा खपत रेटिंग और ऊर्जा पासपोर्ट

Energy Consumption Rating and Energy Passport for Telecommunications Products, Equipment and Network/Services

© टीईसी, 2021

© TEC, 2021

इस सर्वाधिकार सुरक्षित प्रकाशन का कोई भी हिस्सा, दूरसंचार अभियांत्रिकी केंद्र, नई दिल्ली की लिखित स्वीकृति के बिना, किसी भी रूप में या किसी भी प्रकार से जैसे -<u>इलेक्ट्रॉनिक</u>, मैकेनिकल,<u>फोटोकॉपी</u>, रिकॉर्डिंग, स्कैनिंग आदि रूप में प्रेषित, संग्रहीत या पुनरुत्पादित न किया जाए ।

All rights reserved and no part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form and by any means - electronic, mechanical, photocopying, recording, scanning or otherwise, without written permission from the Telecommunication Engineering Centre, New Delhi.

दूरसंचार अभियांत्रिकी केंद्र खुर्शीदलाल भवन, जनपथ, नईदिल्ली–110001, भारत

TELECOMMUNICATION ENGINEERING CENTRE KHURSHIDLAL BHAWAN, JANPATH, NEW DELHI–110001, INDIA www.tec.gov.in

Release 2:Month, 2021

FOREWORD

Telecommunication Engineering Centre (TEC) functions under Department of Telecommunications (DOT), Government of India. Its activities include:

- Formulation of Essential Requirements (ERs), Generic Requirements (GR), Interface Requirements (IR), Service Requirements (SR) and Standards for Telecom Products and Services
- Field evaluation of telecom products and Systems
- Support to DOT on technology issues
- Testing & Certification of Telecom products
- Coordination and cooperation with other standardisation bodies like ITU, IEEE, ETSI etc.

For the purpose of testing, four Regional Telecom Engineering Centers (RTECs) have been established which are located at New Delhi, Bangalore, Mumbai, and Kolkata.

ABSTRACT

This Energy Consumption Rating (ECR) standard delineates the test procedures and the measurement methodologies for ECR and energy passport certification for telecom products, equipment and networks or services. This standard will facilitate service providers and consumers in comprehensive evaluation of telecom products, equipment and networks or services with respect to energy planning and in adding energy efficiency to their purchase criteria.

CONTENTS

FOREWORD	6
ABSTRACT	6
HISTORY SHEET	11
REFERENCES	12
Abbreviations and acronyms	14
1. Introduction:	16
2. Objective of Energy Consumption Rating & Energy Passport:	16
3. Scope:	17
3.1. Telecom Equipment:	17
3.2. Telecommunication Networks:	18
3.3. Telecom Infrastructure:	18
4. Terms and definitions:	19
4.1. Energy Efficiency Hierarchy:	19
4.2. Energy Efficiency at the Network/Service Level:	19
4.3. Energy Efficiency at the Equipment/System Level:	20
4.4. Energy Efficiency at the Component Level:	20
4.5. Energy Efficiency Metric:	20
4.6. Load-proportional efficiency	20
4.7. Energy Consumption Rating:	20
4.8. Energy Passport:	21
4.9. Energy Passport classification:	21
5. Methodology	21
5.1. Energy Consumption Rating determination methodology:	21
5.2. Energy Passport determination and classification	
methodology:	21
6. Future Specification Revisions:	23
ANNEXURE-1	24
Telecom Equipment Test procedures	24
DSLAM, MSAN (Multi-Service Application Node)	24
GPON equipment	26

GEPON equipment	27
Wireless Access Technologies (depending on technology referred	
as BTS, Node B, eNodeB)	28
Wireless Access Technologies (eNodeB)	29
Routers	32
Ethernet switches	33
Small Networking Devices	34
WDM/TDM/OTN Transport MUXes/Switches	35
Converged packet optical equipment with packet signal and TDM	
signal	36
Converged packet optical equipment with packet signal, TDM signal	
and WDM signal functions	37
RNC and Mobile core functions (GGSN, HLR, MGW, MME, MSC,	
SGSN and PGW/SGW or equivalent terminology in 4G)	38
ANNEXURE-2	
Telecommunication Networks	40
Operational Telecommunication Mobile Networks	
ANNEXURE-3	
Telecom Infrastructure Equipment	43
AC power feeding equipment (AC UPS, DC/AC inverter)	
DC power equipment (AC/DC rectifier, DC/DC converter)	43
Renewable energy equipment (Photovoltaic (PV) panel, Wind	
turbine energy, Hydrogen fuel cell (FC) stack)	44
Cooling equipment (Air conditioner)	44
Cooling equipment (Outdoor air cooling equipment, Heat	
exchanging cooling equipment)	
ANNEXURE-4	47
Illustrations: ECR & EP measurement of GPON OLT equipment	47
ANNEXURE-5	51
List of Equipment to be covered in future issues	51

List of Tables

Table 1 DSLAM, MSAN (Multi-Service Application Node)	.24
Table 2 GPON equipment	.26
Table 3 GEPON Equipment	. 27
Table 4 Wireless Access Technologies (Static mode)	. 28
Table 5 Wireless Access Technologies (Dynamic mode)	. 29
Table 6 Servers	. 30
Table 7 Routers	. 32
Table 8 Ethernet Switches	. 33
Table 9 Small Networking Devices	. 34
Table 10 WDM/TDM/OTN Transport Muxes/Switches	. 35
Table 11 Converged packet optical equipment with packet signal	
and TDM signal	.36
Table 12 Converged packet optical equipment with packet signal,	
TDM signal and WDM signal functions	. 37
Table 13 RNC and Mobile core functions (GGSN, HLR, MGW, MME,	
MSC, SGSN and PGW/SGW) or equivalent terminology in 4G	. 38
Table 14: Virtualized Network Function (VNF)	. 38
Table 15 Operational Telecommunication Mobile Networks	. 40
Table 16: Network Functions Virtualization Infrastructure (NFVI)	.41
Table 17: AC power feeding equipment (AC UPS, DC/AC inverter)	. 43
Table 18: DC power equipment (AC/DC rectifier, DC/DC converter)	. 43
Table 19: Renewable energy equipment (Photovoltaic (PV) panel,	
Wind turbine energy, Hydrogen fuel cell (FC) stack)	. 44
Table 20: Cooling equipment (Air conditioner)	.44
Table 21: Cooling equipment (Outdoor air cooling equipment, Heat	
exchanging cooling equipment)	. 45
Table 22 List of measurement instruments used to measure the	
power consumption, including calibration information	. 48

Table 23 Environmental conditions during test	. 48
Table 24 Measurement report format	. 48
Table 25 Measurement results	. 49
Table 26 Measured weighted ECR	. 49
Table 27 Energy Passport Awarded	. 50

List of Figures

Figure 1 Graphical representation of Energy Passport zones	23
Figure 2 Measurement Setup	48

HISTORY SHEET

S.	Name of the Standard	No. of the	Remarks
No.		Standard	
1	Energy Consumption Rating and	TEC 74046:2020	
	Energy Passport for		
	Telecommunications Products,		
	Equipment and Network/		
	Services		
2	Energy Consumption Rating and	TEC 74046:2021	This revision
	Energy Passport for		covers:
	Telecommunications Products,		(1)Standard
	Equipment and Network/		referred in
	Services		server is
			updated. (2)
			Testing
			procedure for
			NVF, Telecom
			Infrastructure
			Equipment
			added.

REFERENCES

- [1] ITU-T L.1310, "Energy efficiency metrics and measurement methods for telecommunication equipment," July 2017. [Online]. Available: https://www.itu.int/rec/T-REC-L.1310/en.
- [2] TRAI, "Recommendations on Approach towards Green Telecommunications," 12.04.2011. [Online]. Available: https://trai.gov.in/sites/default/files/Green_Telecom-12.04.2011.pdf.
- [3] ETSI EN 303 215, "Measurement methods and limits for power consumption in broadband telecommunication networks equipment," 2015. [Online]. Available: https://www.etsi.org/deliver/etsi_en/303200_303299/303215/01.03.01 _60/en_303215v010301p.pdf.
- [4] ETSI TS 102 706-2, "Metrics and Measurement Method for Energy Efficiency of Wireless Access Network Equipment;Part 2: Energy Efficiency - dynamic measurement method," 2018. [Online]. Available: https://www.etsi.org/deliver/etsi_ts/102700_102799/10270602/01.05. 01_60/ts_10270602v010501p.pdf.
- [5] ATIS-0600015.03.2013, "Energy Efficiency For Telecommunication Equipment: Methodology For Measurement And Reporting For Router And Ethernet Switch Products," 2013. [Online]. Available: https://webstore.ansi.org/standards/atis/atis0600015032013.
- [6] ATIS-0600015.03.2009, "Energy Efficiency for Telecommunications Equipment: Methodology for Measurement and Reporting for Router and Ethernet Switch Products," 2009. [Online]. Available: https://www.atis.org/docstore/product.aspx?id=25324.
- [7] ATIS-0600015.02.2016, "Energy Efficiency for Telecommunication Equipment:Methodology for Measurement & Reporting – Transport & Optical Access Requirements," 2016. [Online]. Available:

https://www.atis.org/docstore/product.aspx?id=28263.

- [8] ETSI ES 201 554, "Measurement method for Energy efficiency of Mobile Core network and Radio Access Control equipment," 2014. [Online]. Available: https://www.etsi.org/deliver/etsi_es/201500_201599/201554/01.02.01_ 60/es_201554v010201p.pdf.
- [9] ITU-T L.1330, "Energy efficiency measurement and metrics for telecommunication networks," 2015. [Online]. Available: https://www.itu.int/rec/T-REC-L.1330/en.
- [10 TRAI Susitainable Telecom, "Recommendations on Approach towards
-] Sustainable Telecommunications," 23 10 2017. [Online]. Available: https://trai.gov.in/sites/default/files/Recommendation_Green_telecom munication_23102017.pdf.
- [11 ETSI EN 303 470, "Energy Efficiency measurement methodology and
-] metrics for servers," 2019. [Online]. Available: ETSI EN 303 470.

Abbreviations and acronyms

This Standard uses the following abbreviations and acronyms:

AC	Alternating Current
ADSL2+	Asymmetric Digital Subscriber Line 2 transceiver extended bandwidth
AIR	Authorized Indian representative
BEE	Bureau of Energy Efficiency
BSC	Base Station Controller
BS	Base Station
BTS	Base Transceiver Station
CDMA	Code Division Multiple Access
CS	Circuit Switched
DC	Direct Current
DoT	Department of Telecommunications
DSLAM	Digital Subscriber Line Access Multiplexer
ECR	Energy Consumption Rating
ECR-VL	Energy Consumption Rating Variable Load
EDGE	Enhanced Data for GSM Evolution
EER	Energy Efficiency Rating
EIR	Equipment Identity Register
EP	Energy Passport
GEPON	Gigabit Ethernet Passive Optical Network
GGSN	Gateway GPRS Support Node
GPRS	General Packet Radio Service
GPON	Gigabit Passive Optical Network
GSM	Global System for Mobile Communications
HLR	Home Location Register
HSPA	High Speed Packet Access
IF	Interface
IP	Internet Protocol
ITU	International Telecommunication Union
LAN	Local Area Network
LTE	Long Term Evolution
MGW	Media Gate Way
MME	Mobility Management Entity
MNRE	Ministry of New and Renewable Energy
MSAN	Multiservice Access Node
MSC	Mobile Switching Centre
MSS	Mobile Switching center Server
MT	Mobile Terminated
MTCTE	Mandatory Testing & Certification of Telecom Equipment
Node B	LTE Base Transceiver Station
NNI	Network-Network Interface
OADM	Optical Add-Drop Multiplexer
OC	Optical Carrier
OEM	Original Equipment Manufacturer
OLT	Optical Line Termination

ONT	Optical Transport Network
PDN	Public Data Network
PDP	Packet Data Protocol
PGW	PDN Gateway
PtP	point-to-point
PF	Power Factor
PLMN	Public Land Mobile Network
PON	Passive Optical Network
PONIF	Passive Optical Network Interface
POTS	Plain Old Telephone Service
PPS	Packets Per Second
PSTN	Public Switched Telephone Network
PSU	Power Supply Unit
RBS	Radio Base Station
RNC	Radio Network Controller
SAU	Simultaneously Attached Users
SDH	Synchronous Digital Hierarchy
SGSN	Serving GPRS Support Node
SGW	Serving Gateway
SONET	Synchronous Optical Network
STM	Synchronous Transport Module
SW	Switch
TEC	Telecommunication Engineering Centre
TDM	Time Division Multiplex
TEER	Telecommunications Energy Efficiency Ratio
UNI	User Network Interface
VDSL2	Very high bit rate Digital Subscriber Line
VLR	Visitor Location Register
WCDMA	Wideband Code Division Multiple Access
WDM	Wavelength Division Multiplexing
WiMAX	Worldwide Interoperability for Microwave Access
WTO	World Trade Organization

1. Introduction:

The world's increasing need for the computation, data storage, and communication is driving the rapid growth in telecommunication and enhancing the emissions associated with it. India has the second largest and fastest growing mobile telephone market in the world. Telecom network operation is most significant contributor of carbon emissions in the telecom industry. The greening of the telecom sector assumes significance not only for reduction of carbon emissions but for the need to effect economy in operations as well.

A necessary first step for greening the sector is to measure emission quanta from telecom devices and networks. After estimating the carbon footprint, the next step should be to put in place a robust carbon emission measurement system. Thus, specific standardization metrics for certifying telecom products and equipment to be deployed in the green telecom network are required to be specified.

Energy efficiency is an increasingly important requirement for all modern systems. In general, energy efficiency for telecom product is defined as the relationship between the specific functional unit of an equipment (i.e., the useful work of telecommunications) and the energy consumption of that equipment. For example, when transmission time and frequency bandwidth are fixed, a telecommunication system that can transport more data with less energy is considered to be more energy efficient.

For this reason, metric that can evaluate the performance of a telecom product, equipment and network or service against its energy consumption is called Energy Consumption Rating (ECR) and the same is required to be evaluated. This document is a step in that direction.

However, greening the telecom sector is an endeavour that would require active participation of all three sets of stakeholders – the government, the telecom industry and the citizenry.

2. Objective of Energy Consumption Rating & Energy Passport:

Aim of this standard is to delineate the test procedures and measurement methodologies for ECR and Energy Passport for various telecom products, equipment and network or services which will facilitate benchmarking for green passport certification. Green Passport certification is a step towards achieving broader objective of reduction in carbon emission intensity in telecommunication sector to meet the overall India's target set out in Paris climate agreement 2015.

It is intended to help service providers and consumers in comprehensive evaluation of products, equipment and services for energy planning purposes in

order to enable them to add energy efficiency to their purchase criteria so as to achieve required reduction in carbon footprint.

This Standard is intended to be used by telecommunication network operators, equipment manufacturers, suppliers, and test laboratories as a standard method for determining the energy consumption required to address a specific application. By comparing the ECR reports of multiple equipment that meet a common set of requirements, a telecommunications network operator can select equipment configuration that meets their energy consumption targets.

3. Scope:

The telecom network consists of three major components – the Access network, the Backhaul / aggregators and the Core Network. In the telecom network, the components that contribute to carbon emissions include the RAN (Radio Access Network), fixed line network, fibre to the x (FTTx) networks in the access networks, their core, aggregators (backhauls) and the transmission systems in the central core network. In addition, power generation and power feeding equipment add to the above corban emission due to its own energy inefficiencies and losses.

The telecom access network could be broadly categories into four: first, landline which consists of exchanges (Local, Tandem, TAX), copper distribution network and telephones; second, mobile which consists of access nodes (BTS, Node B, e-Node B, g-Node B), Controllers (BSC, RNC, CU etc.), core (MSC, GGSN, SGSN, EPC, NGC etc.) and mobile phones; third, fixed (copper) broadband which consists of digital subscriber line access multiplexers (DSLAM), customer premise equipment (CPE) and splitters; and fourth, FTTx (optical) which consists of optical line termination equipment (OLT), optical network terminating equipment (ONT), optical distribution network (ODN), and passive / active splitters.

The other three vital blocks that add to the telecom network consist of core network (which includes edge / core routers / NGN /soft switches / IP cores /all core items / data centers / all centralized sub systems / peripherals), aggregators or backhaul and transmission networks.

However, all the products, equipment and networks, as discussed above, are not covered in this standard. The present issue of standard covers the equipment and networks as per list given in succeeding para 3.1 and 3.2. Other equipment and services will be covered in subsequent issues, in due course of time.

3.1. Telecom Equipment:

The following telecom equipment has been covered in this standard.

- i. DSLAM,
- ii. MSAN,
- iii. GPON OLT equipment,
- iv. GEPON OLT equipment

- v. Wireless Access Technologies (Base Station)
- vi. Servers
- vii. Routers
- viii. Ethernet Switches
- ix. Small Networking Devices (intended for home/domestic or small office use)¹
- x. WDM/TDM/OTN Transport MUXes/Switches
- xi. Converged packet optical equipment with packet signal and TDM signal
- xii. Converged packet optical equipment with packet signal, TDM signal and WDM signal functions
- xiii. Radio Network Controller (RNC) and Mobile core functions (GGSN, HLR, MGW, MME, MSC, SGSN and PGW/SGW) and equivalent functions in 4G.
- xiv. Virtualized Network Function (VNF)

3.2. Telecommunication Networks:

Under this category, operational telecommunication mobile network and Network Functions Virtualization Infrastructure (NFVI) have been covered as of now; other type of networks such as fixed line telecommunication network, data centres etc. will be covered in subsequent issues.

3.3. Telecom Infrastructure:

Like telecommunication network, energy efficiency of telecom infrastructure can also be assessed at equipment level and network level:

3.3.1 Telecom Infrastructure Equipment:

The main energy-consuming telecom infrastructure is power feeding equipments and cooling equipments used in data centre or telecommunication facility. The energy efficiency of the telecom infrastructure equipment is expressed solely as the ratio of output energy (Watt-hours delivered) to input energy (Watt-hours consumed) unlike energy consumption rating (ECR) defined in this standard for telecom equipments which is the ratio of energy by throughput. The methodologies for energy efficiency are though applied at single infrastructure equipment level but it will help telecom designers in planning and assessment of data centers, computer rooms, server rooms, TSP sites, telecom facility centre and similar spaces from energy consumption point of view. The power generation equipment like DG sets, solar power equipment, fuel cells etc., cooling equipment like air conditioner/heat exchangers etc. and power feeding equipment such as UPS, inverters, converters and rectifiers are extended part of telecommunication network; however, such equipment are not covered in this standard. Till such time these equipments are being defined in this standard, minimum energy efficiency defined in respective TEC Generic Requirement documents of power feeding

¹A networking device with fixed hardware configuration, designed for home/domestic or small office use, with less than 12 ports. This device can have wireless functionality implemented. Wireless functionality is not considered a port. A tentative list of such devices are given in Table-9.

equipment shall be applicable for testing. However, for power generating and cooling equipment, BEE STAR rating scheme shall be applicable, if one exists. This Standard covers:

- i. Power feeding equipment:
 - AC power feeding equipment (AC UPS, DC/AC inverter);
 - DC power feeding equipment (AC/DC rectifier, DC/DC converter);
 - Renewable energy equipment (Photovoltaic (PV) panel, Wind turbine, Hydrogen fuel cell (FC) stack).
- ii. Cooling equipment:
 - Air conditioner equipment;
 - Outdoor air cooling equipment;
 - Heat exchanging cooling equipment.

3.3.2 Telecom Infrastructure site/centre/network:

Telecom infrastructure provider (IP) sites, TSP sites, telecom facility centre and data centres etc. are some of the examples where energy assessment can be done considering all the telecom infrastructure equipment installed at site as a single unit under normal operating condition over a fairly longer duration. The energy consumption by telecom infrastructure equipment is not the only attributor in the overall energy consumption of data centre or telecommunication facility. Other factors such as architecture and organization of the space and equipment to deliver the power or cooling to the systems, interoperability, management and response of these systems across the demand and operational range are also important. Hence consideration of best practises in all stages/factors helps in maximizing energy efficiency and minimizing environmental impact. Planner may refer ITU-T L.1300 for best practices for energy-efficient design, construction, operation and management of green data centres.

4. Terms and definitions:

The terms and definitions in this standard are primarily for the telecom equipment and telecom networks that are deployed to provide ICT services.

4.1. Energy Efficiency Hierarchy:

An energy efficiency metric can be defined at the network/service level, the equipment/system level and the component level. [1]

4.2. Energy Efficiency at the Network/Service Level:

Network level metrics are used to evaluate the energy efficiency of an entire network or part of it (e.g., the access network of an operator). These are normally used to evaluate a network for internal operator use or to satisfy an environmental assessment. For this definition, the network level is considered a metric that will cover not only one single product, equipment but also a telecommunication network composed of different interworking equipment. [1]

4.3. Energy Efficiency at the Equipment/System Level:

Equipment/system level metrics are mostly used to compare telecommunication equipment of the same technology. They evaluate the overall energy efficiency performance at the equipment/system level, which is considered as a "single box" or "single entity", from the measurement point of view [1].

4.4. Energy Efficiency at the Component Level:

Component-level metrics can be used in the design, development and manufacture of energy efficient equipment. They regard equipment as an "open box" and evaluate the energy efficiency performance of its individual components. Measuring and understanding the energy efficiency or energy consumption of each component within the equipment helps to identify the bottlenecks and key components in a system with regard to energy saving [1].

4.5. Energy Efficiency Metric:

In general, energy efficiency metrics for telecom product is defined as the specific functional unit of an equipment (i.e., the useful work of telecommunications) and the energy consumption of that equipment. For example, when transmission time and frequency bandwidth are fixed, a telecommunication system that can transport more data with less energy is considered to be more energy efficient. Metric will evaluate the performance of a telecom equipment against its energy consumption. [1]

4.6. Load-proportional efficiency

There are classes of telecommunication equipment (e.g., time division multiplex (TDM) switches), where the functional unit is stationary and does not change through the active-use phase. However, a vast number of telecommunication devices operate under variable-load conditions, where the measured value of a functional unit can fluctuate based on user demand. Ideally, telecommunication devices should be able to reduce their energy consumption in proportion to the functional unit produced and in order to capture such capabilities, where available, this standard defines the ECR as a weighted, load-proportional metric. [1]

4.7. Energy Consumption Rating:

It is calculated as energy consumption normalized to effective throughput and defined by the formulae: ECR= (E / T), where E denotes the maximum energy consumption (in watts) and T denotes the effective system throughput (in bits per second).

In other words, it is assumed that the more energy-efficient product, equipment and network or service to be the one that can transport more data using the same energy budget. [2]

4.8. Energy Passport:

ECR of a product, equipment and network or service has very little value unless a comparison is drawn among the equals. By comparing the ECR reports of multiple equipment that meet a common set of requirements, a telecommunications network operator can select a product, equipment and network or service configuration that meets their energy consumption targets. Energy Passport is such a visual sign of compared result of ECR of same category of products, equipment and networks or services.

Comparing product metrics will allow the service providers to add energy efficiency to purchase criteria. [2]

4.9. Energy Passport classification:

Energy Passport classification will be used to signify relative position of product, equipment and network or services on energy consumption rating scale for certification and labelling purpose.

5. Methodology

5.1. Energy Consumption Rating determination methodology:

The following steps are required for determining ECR of telecom products, equipment and network or services.

- Step A: Identifying common test methodology, equipment configuration and setup.
- Step B: Identifying common energy efficiency and/or performance measurement metrics
- Step C: Identifying common scenario/states/mode associated with performance and characterizing energy efficiency and/or performance measurement metrics for such cases which are called variable-load metrics.
- Step D: Expressing mathematical formula for weighted ECR by assigning prop-ortionate weight coefficient to variable load metrics and calculating measured weighted ECR value.

Based on the above steps, ECR calculation methodology in respect of telecom equipment listed in 3.1 and telecom network listed in 3.2 are tabulated in annexure-1 and annexure-2 respectively.

5.2. Energy Passport determination and classification methodology:

Energy Passport determination (discovery of reference values) Steps 1 to 3 are to be taken for determining energy passport reference values. Step 1: Obtain weighted ECR values of each of samples in the given category of

product/equipment/network/services as prescribed in 5.1.

(Note: Number of samples required for calculating reference ECR may be five or more which may be collected over a period of 6 months before proceeding to 5.2-step 2 in the beginning of this scheme.)

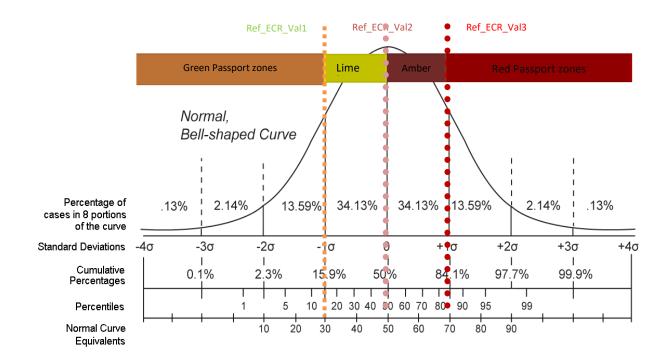
Step 2: Calculate mean and standard deviation of samples.

Mean= $\frac{(ECR_1 + ECR_2 + \dots + ECR_n)}{(ECR_1 + ECR_2 + \dots + ECR_n)}$

Standard Deviation= $\sqrt{\frac{\sum_{i=1}^{n} (ECR_i - mean)^2}{n-1}}$ Where ECR₁, ECR₂...ECR_i...ECR_n are weighted ECR values of samples.

Step 3: Finding reference ECR values;

Ref_ECR_Val1= (mean-standard deviation)


Ref_ECR_Val2= (mean)

Ref_ECR_Val3= (mean+standard deviation)

(Note: Validity of these reference values could be one year or as notified in the scheme. While calculating revised reference values, all active samples received preceding year will be considered.)

Step 4: Energy Passport classification:

- (a) Class A or colour Green- if measured weighted ECR value is less than Ref_ECR_val1 (mean-standard deviation);
- (b) Class B or colour Lime- if measured weighted ECR value is less than Ref_ECR_val2 (mean) but equal to or more than Ref_ECR_val1 (meanstandard deviation);
- (c) Class C or colour Amber- if measured weighted ECR value is less than Ref_ECR_val3 (mean+standard deviation) but equal to or more than Ref_ECR_val2 (mean);
- (d) Class D or colour RED- if measured weighted ECR value is equal or more than Ref_ECR_val3 (mean+standard deviation);
 where Class A or colour Green signifies the most energy efficient followed by class B/ colour Lime, class C/ colour Amber and class D/ colour Red.

Figure 1 Graphical representation of Energy Passport zones

(Note: Considering Green Passport is an aspiration so top 16% devices having lowest power consumption vs throughput are considered for this label.)

6. Future Specification Revisions:

TEC reserves the right to revise the specification should technological and/or market changes affect its usefulness or its impact on the environment or due to any policy/ regulatory requirement.

ANNEXURE-1

(An integral part of the document)

Telecom Equipment Test procedures

Table 1 DSLAM, MSAN (Multi-Service Application Node)

Equipment category	Telecom Equipment		
Sub category	DSLAM, MSAN (Multi-Service Application Node)		
Test Methodologies	ETSI EN 303 215		
Equipment Configuration And Set-Up	ETSI EN 303 215		
General Measurement Conditions	<u>ITU-T L.1310</u>		
Metric	ITU-T L.1310P1 is power measurements (in Watts) of fully equipped broadband network equipment operating in L0 state.P2 is power measurements (in Watts) of fully equipped broadband network equipment operating in L2 state.P3 is power measurements (in Watts) of fully equipped broadband network equipment operating in L3 state.Tos1output bit rate per subscriber line of the broadband network equipment operating in L0 state.Tos2output bit rate per subscriber line of the broadband network equipment operating in L2 state.Tos3output bit rate per subscriber line of the broadband network equipment operating in L3 state.Tos3output bit rate per subscriber line of the broadband network equipment operating in L3 state.Tos3output bit rate per subscriber line of the broadband network equipment operating in L3 state.Where, L0- full-power state in which the maximal allowed data transmission is possibleL2- low-power state in which a limited power reduction capability and a limited data transmission is allowed L3-stand-by state in which the largest power reduction capability and no transmission of data is possibleTosavg is the weighted output bit rate for the subscriber (in Mbit/s) of the broadband network equipment Pavg is the weighted energy consumption (in Watts) per line of the		
Modes	depending on the energy mode availa Power mode available	ble in the equipment: Weight multipliers	

		a, b, c
	L0, L2, L3	a=0.15, b=0.06, c=0.79
	L0, L2	a=0.2, b=0.8, c=0
	LO	a=1, b=0, c=0
Weight coefficient	$T_{OSavg} = aT_{OS1} + bT_{OS2} + cT_{OS3}$ $P_{avg} = aP_1 + bP_2 + cP_3 [W]$	
Weighted ECR	= P _{avg} /T _{OSavg} [W/ Mbps]	
Remark		

Table 2 GPON equipment

Equipment category	Telecom Equipment
Sub category	GPON equipment
Test Methodologies	ETSI EN 303 215
Equipment Configuration And Set-Up	ETSI EN 303 215
General Measurement Conditions	ITU-T L.1310
Metric	P_{EQ} is the power (in watts) of a fully equipped GPON-OLT equipment. N _{ports} is the maximum number of ports served by the GPON-OLT equipment under test. T_{OS} is Bit rate per port is the downstream active data rate expressed in Gbit/s
Modes	One mode i.e. Full-load state
Weight coefficient	P _{port} power consumption per port (in W) of a fully equipped GPON-OLT equipment, P _{port} = P _{EQ} /N _{ports} [W/port] T _{OS} is the Bit rate per port in the downstream active data rate expressed in Gbit/s
Weighted ECR	= P _{port} /T _{os} [W/Gbps]
Remark	

Table 3 GEPON Equipment

Equipment category	Telecom Equipment
Sub category	GEPON equipment
Test Methodologies	ETSI EN 303 215
Equipment Configuration And Set-Up	ETSI EN 303 215
General	
Measurement	<u>ITU-T L.1310</u>
Conditions	
Metric	$ \begin{array}{l} P_{100} \text{ is power consumption (in Watts) for the OLT at 100% load.} \\ P_{50} \text{ is power consumption (in Watts) for the OLT at 50% load.} \\ P_{0} \text{ is power consumption (in Watts) for the OLT at 0% load.} \\ P_{avg} \text{ is the average power consumption (in Watts)} \\ N_{IF} \text{ is Total number of interface (IF) ports} \\ N_{PON} \text{ is number of PON branches} \\ T_{L} \text{ is total number of lines = N_{IF} x N_{PON}} \end{array} $
Modes	Three modes for power metric (0%, 50%, 100% load)
Weight coefficient	$P_{avg} = (P_{100} + P_{50} + P_0) / 3$
Weighted ECR	= P _{avg} / T _L [W/Line]
Remark	

Equipment category	Telecom Equipment
Sub category	Wireless Access Technologies (depending on technology referred as BTS, Node B, eNodeB)
Test Methodologies	ETSI ES 202 706-1
Equipment Configuration And Set-Up	ETSI ES 202 706-1
General Measurement Conditions	<u>ITU-T L.1310</u> ,
Metric	P _i -Measured Power Consumption (W) T _i -Measured time i - Modes
Modes	Three Modes: (i) Low load (ii) Medium term load, (iii) Busy-Hour load
Weight coefficient	$T_{low} = 8, T_{medium} = 10, T_{busy-hour} = 6$ $P_{Total} = \frac{\sum_{i=1}^{3} P_i * T_i}{\sum_{i=1}^{3} T_i}$
Weighted ECR	= P _{Total} (W)
Remark	The technologies covered are- Global System for Mobile Communications (GSM), Wideband Code Division Multiple Access (WCDMA), Worldwide interoperability for Microwave Access (WiMAX) and Long-Term Evolution (LTE) (including LTE advanced (LTE-A)).

Table 4 Wireless Access Technologies (Static mode)

Equipment category	Telecom Equipment
Sub category	Wireless Access Technologies (eNodeB)
Test Methodologies	ETSI TS 102 706-2
Equipment Configuration And Set-Up	ETSI TS 102 706-2
General Measurement Conditions	<u>ITU-T L.1310</u> ,
Metric	 E_i : Measured Energy Consumption (Wh) T_i : Measured time DV_i : Measured data volume (bits) i : Modes
Modes	Modes: 3 (i) Low Power (ii) Medium Power, (iii) Busy-Hour
Weight coefficient	$\begin{split} W_{low} &= 8, \ W_{medium} = 10, \ W_{busy-hour} = 6 \\ DV_{Total} &= \Sigma[(W_i^* DV_i)/T_i] \\ E_{Total} &= \Sigma[(W_i^* E_i)/T_i] \end{split}$
Weighted ECR	$=\frac{E_{Total}}{DV_{Total}} \left[\frac{Wh}{bits}\right]$
Remark	The technologies covered are- Long-Term Evolution (LTE) (including LTE advanced (LTE-A)).

Table 5 Wireless Access Technologies (Dynamic mode)

Table 6 Servers

Equipment category	Telecom Equipment
Sub category	Servers
Test Methodologies	ETSI EN 303 470 OR ISO/IEC 21836
Equipment Configuration And Set-Up	ETSI EN 303 470 OR ISO/IEC 21836
General Measurement Conditions	ETSI EN 303 470 OR ISO/IEC 21836
Metric	 Eff_{Compress} normalized interval efficiency of CPU worklet_{Compress}, Eff_{LU} normalized interval efficiency of CPU worklet_{LU}, Eff_{SOR} normalized interval efficiency of CPU worklet_{SOR}, Eff_{Crypto} normalized interval efficiency of CPU worklet_{SOR}, Eff_{Sorts} normalized interval efficiency of CPU worklet_{Sort}, Eff_{Sh4256} normalized interval efficiency of CPU worklet_{SH4256}, and Eff_{HybridSSJ} normalized interval efficiency of CPU worklet_{Hybrid} SSJ. Eff_{Flood3} normalized interval efficiency of Memory worklet_{Flood3}, Eff_{Capacity3} normalized interval efficiency of Storage worklet_{Sequential}, Eff_{Random} normalized interval efficiency of Storage worklet_{Random}, Where Eff_i = 1000*(Perf_i/P_i) Perf_i: Geometric mean of the normalized interval power values.
Modes	It is to be measured in 7 CPU, 2 Memory and 2 Storage worklets CPU worklets: Compress, LU, CryptoAES, SOR, Sort, SHA256; and Hybrid SSJ. Memory worklets: Flood3 and Capacity3. Storage worklets: Sequential and Random.
Weight coefficient	$\begin{split} & \mbox{Eff}_{CPU} = (\mbox{Eff}_{Compress} * \mbox{Eff}_{LU} * \mbox{Eff}_{Sork} * \mbox{Eff}_{Sorts} * \mbox{Eff}_{SHA256} * \mbox{Eff}_{HybridSSJ})^{1/7} \\ & \mbox{Eff}_{Memory} = (\mbox{Eff}_{Flood3} * \mbox{Eff}_{Capacity3})^{1/2} \\ & \mbox{Eff}_{Storage} = (\mbox{Eff}_{Sequential} * \mbox{Eff}_{Random})^{1/2} \\ & \mbox{Eff}_{Server} = (\mbox{Eff}_{CPU})^{0.65} \times (\mbox{Eff}_{Memory})^{0.3} \times (\mbox{Eff}_{Storage})^{0.05} \end{split}$
Weighted ECR	= $\frac{1}{Eff_{Server}}$ [W/bits]
Remark	 The Server metrics of the present document are applicable to the following Server product categories: Blade server Multi-node server Direct current server

 Rack server Pedestal or Tower server Resilient server
Note : To test/evaluate for ECR/EP, OEM declared product category and configuration from ETSI or ISO standard shall be used.

Table 7 Routers

Equipment category	Telecom Equipment
Sub category	Routers
Test Methodologies	ATIS-0600015.03.2016
Equipment Configuration And Set-Up	ATIS-0600015.03.2016
General Measurement Conditions	<u>ITU-T L.1310</u> ,
Metric	Ti is weighted throughput Pw _i is weighted power i Utilization level
Modes	3 modes based on three Utilization level i.e. 0%, 10%/30%, 100%.
Weight coefficient	$\begin{split} & i_0/i_{100} = 0.1, i_{10}/i_{30} = 0.8 \\ & T_{\text{Total}} = (.1^*T_0 + .8^*T_{10/30} + .1^*T_{100}) \\ & Pw_{\text{Total}} = (.1^*Pw_0 + .8^*Pw_{10/30} + .1^*Pw_{100})) \end{split}$
Weighted ECR	$\frac{Pw_{Total}}{T_{Total}} \left[\frac{W}{Mbps}\right]$
Remark	Access router, Edge router has 10% Utilization factor. Core router has 30% utilization factor. It is assumed that routers will be in i ₀ or i ₁₀₀ state about 10% of time.

Table 8 Ethernet Switches

Equipment category	Telecom Equipment
Sub category	Ethernet switches
Test Methodologies	ATIS-0600015.03.2016
Equipment Configuration And Set-Up	ATIS-0600015.03.2016
General Measurement Conditions	<u>ITU-T L.1310</u> ,
Metric	Ti is weighted throughput Pw _i is weighted power i is Utilization level
Modes	3 modes based on three Utilization level i.e. 0%, 10%/30%, 100%.
Weight coefficient	$\begin{split} & i_0/i_{100} = 0.1, \ i_{10}/i_{30} = 0.8 \\ & T_{\text{Total}} = (.1^*T_0 + .8^*T_{10/30} + .1^*T_{100}) \\ & Pw_{\text{Total}} = (.1^*Pw_0 + .8^*Pw_{10/30} + .1^*Pw_{100})) \end{split}$
Weighted ECR	$\frac{Pw_{Total}}{T_{Total}} \qquad \left[\frac{W}{Mbps}\right]$
Remark	(1) Access, (2) High speed access, (3) Distribution/ Aggregation switches has 10% Utilization factor (4) Core, (5) Data centre switches has 30% Utilization factor. For DUT with 40 GBs and higher speed ports it is permitted to use vertical "snake"/cascade topology and will be tested as per ITU- L.1310.

Table 9 Small Networking Devices

Equipment category	Telecom Equipment
Sub category	Small Networking Devices
Test Methodologies	ATIS-0600015.08.2014
Equipment Configuration And Set-Up	ATIS-0600015.08.2014
General Measurement Conditions	<u>ITU-T L.1310</u> ,
Metric	Tij is weighted throughput Pij is weighted power i- Mode j- 0.5(T 20% of max distance +T 80% of max distance)-(Applicable to interfaces with throughput (T) sensitive to distance)
Modes	3 modes: idle mode, low power mode, Maximum load mode
Weight coefficient	$\begin{split} & W_{idle} = .35, W_{low power} = .5, W_{maximum} = .15 \\ & T_{Total} = (.35^*T_{idle} + .5^*T_{low power} + .15^*T_{maximum}) \\ & P_{Total} = (.35^*P_{idle} + .5^*P_{low power} + .15^*P_{maximum}) \end{split}$
Weighted ECR	$\frac{Pw_{Total}}{T_{Total}} \left[\frac{W}{Mbps}\right]$
Remark	Examples of small networking devices include, but are not limited to: Home Gateways: DSL CPEs (ADSL, ADSL2, ADSL2plus, VDSL2, VDSL2 with G.993.5 (Vectoring) support) and G. fast DOCSIS Cable CPEs Optical CPEs (PON and PtP) Ethernet router CPEs Wireless CPEs (WiMAX, 3G, and LTE) Simple broadband access devices: DSL CPEs powered by USB Layer 2ONUS Home network infrastructure devices: Wi-Fi access points Small hubs and non-stackable Layer 2 switches Power line adapters Alternative LAN technologies (HPNA and MoCA) adapters Optical LAN adapter Other home network devices: ATA / VoIP gateway VoIP telephone (standalone standard desktop phone)

Table 10 WDM/TDM/OTN Transport Muxes/Switches

Equipment category	Telecom Equipment
Sub category	WDM/TDM/OTN Transport MUXes/Switches
Test Methodologies	ATIS-0600015.02.2016
Equipment Configuration And Set-Up	ATIS-0600015.02.2016
General Measurement Conditions	<u>ITU-T L.1310</u> ,
	P ₀ measured power consumption (W) at a 0% data traffic utilization
Metric	P ₅₀ measured power consumption (W) at a 50% data traffic utilization
	P_{100} measured power consumption (W) at a 100% data traffic utilization
	$D_{100\text{-}i}$ 100% data rate (bps) at a given interface i n Total number of interfaces.
Modes	Three mode for power metric calculation i.e. 0%, 50%, 100% data traffic.
Weight coefficient	$P_{\text{Total}} = \frac{(P_0 + P_{50} + P_{100})}{3}$ $D_{\text{Total}} = \sum_{i=1}^{n} D_{100-i}$
Weighted ECR	$=\frac{P_{Total}}{D_{Total}} \left[\frac{W}{bps}\right]$
Remark	 Examples of Transport category equipment include, but are not limited to: SONET/SDH ADMs, MSPP, and similar equipment. "OTN" (Optical Transport Network) equipment. Digital Cross Connect Systems (DCS). ROADM/WDM and similar equipment. Video transport equipment. Storage area networking equipment. Free space optics. Point-to-point wireless transport (e.g., Microwave).

Table 11 Converged packet optical equipment with packet signal and TDM

signal

Equipment	Telecom Equipment
category	Converged packet optical equipment with packet signal
Sub category	and TDM signal
Test Methodologies	<u>ITU-T L.1310</u> ,
Equipment Configuration And Set-Up	<u>ITU-T L.1310</u> ,
General Measurement Conditions	<u>ITU-T L.1310</u> ,
Metric	A: maximum Throughput (Gbps) of Packet Functions (port speed (Gbps) * number of ports * number of slots) B: maximum throughput (Gbps) of TDM functions (port speed (Gbps) * number of ports * number of slots) Pidle: power consumption (W) of total equipment with no data throughput with minimum components and path configuration Pmax: power consumption (W) of total equipment during main signal transmission with maximum component configuration
Modes	2 modes for Throughput metric calculation 2 modes for Power consumption metric calculation
Weight coefficient	Maximum Throughput $D_{i} = \sqrt{\frac{A^{2} + B^{2}}{2}}$ Average Power Consumption $P_{Average} = \frac{P_{idle} + P_{max}}{2}$
Weighted ECR	$=\frac{P_{Average}}{D_i} \left[\frac{W}{bps}\right]$
Remark	

Table 12 Converged packet optical equipment with packet signal, TDM signal and WDM signal functions

Equipment category	Telecom Equipment		
Sub category	Converged packet optical equipment with packet signal, TDM signal and WDM signal functions		
Test Methodologies	<u>ITU-T L.1310</u> ,		
Equipment Configuration And Set-Up	<u>ITU-T L.1310</u> ,		
General Measurement Conditions	<u>ITU-T L.1310</u> ,		
Metric	 A: maximum throughput (Gbps) of packet functions (port speed (Gbps) * number of ports * number of slots) B: maximum throughput of TDM function (Gbps) (port speed (Gbps) * number of ports * number of slots) C: maximum throughput of WDM function (Gbps) (port speed (Gbps) * number of ports * number of slots) (port speed (Gbps) * number of ports * number of slots) (a: add/drop rate of WDM function Pidle: power consumption (W) of total equipment with no data throughput with minimum components and path configuration Pmax: power consumption (W) of total equipment during main signal transmission with maximum component configuration (WDM part: full wave length, maximum frequency 		
Modes	3 modes for Throughput metric calculation 2 modes for Power consumption metric calculation		
Weight coefficient	Maximum Throughput $D_{i} = \sqrt{\left(\frac{A^{2} + B^{2} + (C * \alpha)^{2}}{3}\right)}$ Average Power Consumption $P_{Average} = \frac{P_{idle} + P_{max}}{2}$		
Weighted ECR	$=\frac{P_{Average}}{D_{i}} \left[\frac{W}{bps}\right]$		
Remark			

Table 13 RNC and Mobile core functions (GGSN, HLR, MGW, MME, MSC, SGSN and PGW/SGW) or equivalent terminology in 4G

Equipment category	Telecom Equipment				
Sub category	RNC and Mobile core functions (GGSN, HLR, MGW, MME,				
	MSC, SGSN and PGW/SGW or equivalent terminology in				
	4G)				
Test Methodologies	ETSI ES 201 554				
Equipment Configuration And Set-Up	ETSI ES 201 554				
General Measurement Conditions	ETSI ES 201 554				
Metric	$\begin{array}{l} P_{H}-\text{ high Power Consumption during high capacity operation} \\ P_{M}-\text{ Medium Power Consumption during Medium capacity operation} \\ P_{L}-\text{ Low Power Consumption during Low capacity operation} \\ T_{H}-\text{ high capacity operation= } 1.0x T_{s} \\ T_{M}-\text{ Medium capacity operation= } 0.7x T_{s} \\ T_{L}-\text{ Low capacity operation= } 0.1x T_{s} \\ T_{S}-\text{ the maximum capacity according to the vendor's specification of the specific implementation of the function} \\ P_{M}-\text{ Reduce Power} \end{array}$				
	Profile	Node	α	β	γ
Modes	Subscriber	HLR EIR, RNC	0.1	0.4	0.5
	Data	GGSN, SGSN, MME, PGW	0.2	0.45	0.35
Weight	Voice	MGW MSC	0.4	0.4	0.2
coefficient	$Pavg = (\alpha \times P_{L} + \beta \times P_{M} + \gamma \times P_{H}) [W]$				
Weighted ECR	$= \frac{P_{avg}}{T_s}$ [W/Erlang or W/PPS or W/Subscribers or W/SAU]				
Remark	The technologies	covered are- GSM, UMTS, LTE	and LTE-A	4	

Table 14: Virtualized Network Function (VNF)

Equipment	Telecom Equipment	
category		
Sub category	Virtualized Network Function (VNF)	
Test		
Methodologies	<u>ITU-T L.1361</u>	
Equipment	ITU-T L.1361	
Configuration		

And Set-Up	
General	ITU-T L.1361
Measurement	
Conditions	
	U_i is the useful output of VNF under service capacity level <i>i</i> .
	Depending on the different types of VNFs, it can be
	throughput (e.g., bit per second (bps), packet per second
Matria	(pps)) for a data plane VNF, or capacity (e.g., number of
Metric	subscribers or sessions) for a control plane VNF.
	P_{i} is the power consumption of a NFVI platform introduced by
	a VNF deployed under service capacity level <i>i</i> .
Modes	N is the total number of service capacity levels
Modes	w _i is the weight coefficient of level <i>i</i> .
	$VNF_EER_i = \frac{U_i}{P_i}$
	$VNF_EER = \sum_{i=1}^{n} (VNF_EER_i \times w_i)$
Weight	
coefficient	VNF_EER, is energy efficiency of a VNF under service
	capacity level <i>i</i> .
	VNF_EER is weighted energy efficiency of all service
	capacity levels.
Weighted ECR	$=\frac{1}{\text{VNF}_{\text{EER}}} \left[\frac{Wh}{bits}\right]$
	The measurement method described in the present document is
Remark	intended to be used to assess and compare the energy efficiency of
	same functional components

(An integral part of the document)

Telecommunication Networks

Table 15 Operational Telecommunication Mobile Networks

Category	Telecom Network		
Sub category	Operational Telecommunication Mobile Networks		
Test Methodologies	<u>ITU-T L.1330</u> ,		
Equipment Configuration And Set- Up	ITU-T L.1330,		
General Measurement Conditions	<u>ITU-T L.1330</u> ,		
	EC _{MN} is mobile network energy consumption		
	EC _{BS} refers to the base stations energy consumption in		
	the MN under measurement		
	EC_{BH} is the backhaul energy consumption providing		
	connection to the BSs in the MN under measurement		
	EC_{SI} is the site infrastructure (rectifier, battery losses,		
	climate equipment, tower mount amplifier (TMA), tower		
	illumination, etc.) energy consumption		
Metric	EC_{RC} is the control node(s), including all infrastructure of the RC site energy consumption		
	DV_{MN-PS} for packet switched services, DV_{MN-PS} is defined as data volume delivered by the equipment of the MN under investigation during the time frame T of the energy consumption assessment		
	DV_{MN-CS} for circuit switched services such as voice,		
	DV_{MN-CS} is defined as the data volume delivered by the		
	equipment of the MN under investigation during the		
	time frame T of the energy consumption assessment.		
Modes	2 modes for Throughput metric calculation		

	4 modes for Power consumption metric calculation	
Weight coefficient	$EC_{MN} \text{ mobile network energy consumption}$ $EC_{MN} = \sum_{i} \left(\sum_{k} EC_{BS_{i,k}} + EC_{SI_{i}} \right) + \sum_{j} EC_{BH_{j}} + \sum_{l} EC_{RC_{l}}$ $DV_{MN} \text{ Data volumes}$ $DV_{MN} = DV_{MN-PS} + DV_{MN-CS}$	
Weighted ECR	$=\frac{EC_{MN}}{DV_{MN}}$ [Wh/bit]	
Remark	The mobile network consists of radio access parts namely radio base stations, backhauling systems, radio controllers and other infrastructure site equipment. The technologies covered are- GSM, UMTS, LTE and LTE-A.	

Table 16: Network Functions Virtualization Infrastructure (NFVI)

Equipment	
category	Telecom Equipment
Sub category	Virtualized Network Function (VNF)
Test	ITU-T L.1361
Methodologies	<u>110-1 L.1301</u>
Equipment	ITU-T L.1361
Configuration	
And Set-Up	
General	<u>ITU-T L.1361</u>
Measurement	
Conditions	
	$U_{i,j}$ is the useful output of VNF_j under service capacity level <i>i</i> .
Metric	$P_{i,j}$ is the power consumption of a NFVI platform with VNF_j
	deployed under service capacity level <i>i</i> .
Modes	<i>j</i> is the total number of VNF deployed.
	$NFVI_EER_{VNFj} = \frac{U_{i,j}}{P_{i,j}}$
	NFVI_EER= $\sum_{j=1}^{n} (NFVI_EER_j)$
Weight	
coefficient	NFVI _EER, is energy efficiency of NFVI platform with VNFj
	deployed
	NFVI _EER is aggregation of all energy efficiency of NFVI
	platform with different VNF deployed.

Weighted ECR	$=\frac{1}{NFVI_EER}$	$\left[\frac{Wh}{bits}\right]$
Remark		

(An integral part of the document)

Telecom Infrastructure Equipment

Table 17: AC power feeding equipment (AC UPS, DC/AC inverter)

Equipment category	Telecom Infrastructure Equipment
Sub category	AC power feeding equipment (AC UPS, DC/AC inverter)
Test Methodologies	<u>ITU-T L.1320</u> ,
Equipment Configuration And Set-Up	<u>ITU-T L.1320</u> ,
General Measurement Conditions	<u>ITU-T L.1320</u> ,
Metric	P_o is the active output power [W] P_i is the active input power [W]
Energy Efficiency	$=\frac{P_0}{P_i} \left[\frac{W}{W}\right]$
Remark	

Table 18: DC power equipment (AC/DC rectifier, DC/DC converter)

Equipment category	Telecom Infrastructure Equipment
Sub category	DC power equipment (AC/DC rectifier, DC/DC
	converter)
Test	ITU-T L.1320,
Methodologies	<u>110-1 L.1320</u> ,
Equipment	
Configuration And	<u>ITU-T L.1320</u> ,
Set-Up	
General	
Measurement	<u>ITU-T L.1320</u> ,
Conditions	
Metric	V_o is the output voltage [V]
	l₀ is the output current [A]

	P _i is the input power [W]
Energy Efficiency	$=\frac{V_0 \times I_0}{P_i} \left[\frac{W}{W}\right]$
Remark	

Table 19: Renewable energy equipment (Photovoltaic (PV) panel, Wind turbine energy, Hydrogen fuel cell (FC) stack)

Equipment category	Telecom Infrastructure Equipment	
Sub category	Renewable energy equipment (Photovoltaic (PV) panel, Wind turbine energy, Hydrogen fuel cell (FC) stack)	
Test Methodologies	<u>ITU-T L.1320</u> ,	
Equipment Configuration And Set-Up	<u>ITU-T L.1320</u> ,	
General Measurement Conditions	<u>ITU-T L.1320</u> ,	
Metric	V_o is the output voltage [V] I_o is the output current [A] P_i is the input power [W]	
Energy Efficiency	$= \frac{V_0 \times I_0}{P_i} \left[\frac{W}{W}\right]$	
Remark	 P_i is (Ir* S) for Photovoltaic (PV) panel, where Ir is irradiance and S is the squire of the PV arrays. P_i is (1/(2* ρ*S*υ²) for Wind turbine, where ρ is air density, S is wind wheel sweeping area and υ is wind speed. P_i is (mH2* LHVH2) for Hydrogen fuel cell (FC) stack, where mH2 is the hydrogen flow rate [g/s] and LHVH2 is the hydrogen low heat value [J/g]. 	

Table 20: Cooling equipment (Air conditioner)

Equipment category	Telecom Infrastructure Equipment	
Sub categoryCooling equipment (Air conditioner)		
Test Methodologies	<u>ITU-T L.1320</u> ,	

Equipment Configuration And	<u>ITU-T L.1320</u> ,
Set-Up	
General	
Measurement	<u>ITU-T L.1320</u> ,
Conditions	
	Qs is the sensible cooling capacity [W]
Metric	QL is latent cooling capacity [W]
	P _i is the input power [W]
Energy Efficiency	$= \frac{Q_S + Q_L}{P_i} \left[\frac{W}{W}\right]$
Remark	 Qs = Cp × p × L × ΔT, where Cp is specific heat of the air [J/kg°C], ρ is air density [kg/m3], L is the total room air volume [m3/s], ΔT is the temperature difference between inside and outside the room [°C]. QL = K × p × L × (W1 – W2), where K is the latent heat of vaporization water [J /kg], ρ is air density [kg/m3], L is the total room air volume [m3/s], W1 is the initial water content of the air [kg/kg], W2 is the final water content of the air [kg/kg].

Table 21: Cooling equipment (Outdoor air cooling equipment, Heat

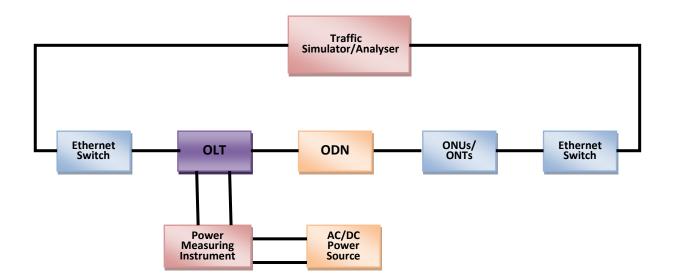
exchanging cooling equipment)

Equipment category	Telecom Infrastructure Equipment
Sub category	Cooling equipment (Outdoor air cooling equipment, Heat exchanging cooling equipment)
Test Methodologies	<u>ITU-T L.1320</u> ,
Equipment Configuration And Set-Up	<u>ITU-T L.1320</u> ,
General Measurement Conditions	<u>ITU-T L.1320</u> ,
Metric	Qs is the sensible cooling capacity [W] P _i is the input power [W]
Energy Efficiency	$= \frac{Q_S}{P_i} \left[\frac{W}{W}\right]$
Remark	• $Q_s = Cp \times p \times L \times \Delta T$ for Outdoor air cooling equipment, where

Cp is specific heat of the air [J/kg°C], ρ is air density [kg/m3], L
is the total room air volume [m3/s], ΔT is the temperature
difference between inside and outside the room [°C].
• $QS = Cp \times \rho \times L \times \Delta T \times \eta e$ for Heat exchanging cooling
equipment, where Cp is specific heat of the air [J/kg°C], ρ is air
density [kg/m3], L is the total room air volume [m3/s], ΔT is
the temperature difference between inside and outside the
room [°C] and η_e is the efficiency of the core heat exchanger.

(Not an integral part of the document)

Illustrations: ECR & EP measurement of GPON OLT equipment


- Assumptions: 5 Samples of OLTs namely S1, S2, S3, S4 and S5 under test are of same configurations and are from five different vendors. Values given in table 18 are assumed for illustration. Actual OLT test may throw different values. Sampled GPON OLT under test are of following configuration:
 - Compliance with Recommendation ITU-T G.984
 - Downstream data-rate is 2.488 Gbps and upstream data-rate is 1.244 Gbps.
 - Configured with Class B+ (Recommendation ITU-T G.984.2) optical modules.

- Each port of Line termination board is directly connected to one ONU with a 15 dB attenuator, but without splitter. The ONU will typically provide sufficient capacity to fully load the GPON interface with the OLT. It should be verified that the selected ONU is configured such that the upstream bandwidth can be filled by the ONU and that the downstream bandwidth coming from OLT can be fully processed.

- Typical features: standard Layer-2 (Ethernet) aggregation functionalities, MAC address management, VLAN management, Multicast. For equipment with network layer functionalities, other features including static and dynamic routing protocols, MPLS, IP QoS. OLT (GPON, fully equipped with maximum configuration implementing standard Layer-2 (Ethernet) aggregation functionalities, including Multicast.

2. Measurement Setup and test procedures:

2.1. Setup the equipment under test as shown in the figure below.

Figure 2 Measurement Setup

2.2. Instruments requirement for test:

Table 22 List of measurement instruments used to measure the power consumption, including calibration information

Instrument	Make and Model	Calibration
DC source		
Power meter		
ODN		
Traffic Analyzer/Simulator		
Ethernet Switch		
CPE (ONU/ONT) used for the measurement.		

2.3. Measurement of Environmental conditions during test:

Table 23 Environmental conditions during test

Environmental conditions	Reference	Reading value
Temperature	25±3ºC	
Relative Humidity	30% to 75%	
Air pressure	860 to 1060 hPa	
Electrical conditions		
Range of direct current(DC) voltage powering	-54 +1.5 V	
the equipment		
Range of AC voltage and frequency powering	specified voltage	
the equipment	±5% and the	
	specified frequency	
	±1%	

2.4. Reporting format of the measurements by Laboratories The following details shall be included in the measurement report:

Table 24 Measurement report format

S.No.	Description	Details
	OEM	
	Product Name	
	Model No	
	Serial No	
	Year	
	System Configuration	
	Software/Firmware details	

ECR value	
Name of TEC Standard complied	

2.5. Measurement results:

Table 25 Measurement results

Metric	S1	S2	S 3	S4	S5
P _{EQ} is the power (in watts) of a fully equipped		550	520	480	540
GPON-OLT equipment					
Nports is the maximum number of ports served by the GPON-OLT equipment under test	64	64	64	64	64
T _{os} Active data rate per port in downstream in Gbit/s	2.488	2.488	2.488	2.488	2.488

- 2.6. **ECR and EP Calculation:** Value of ECR can be calculated as per the formula provided in table no.2 and as EP as per the formulae given in 5.2.
- (i) Formula for weighted ECR for GPON is given in table 2 ECR= P_{port}/T_{OS} [W/ Gbps]
 - Where, Pport= P_{EQ} /Nports[W/port]
- (ii) Measured weighted ECR: Table 26 Measured weighted ECR

Samples	S1	S2	S3	S4	S5
ECR	3.140	3.454	3.265	3.014	3.391

(iii) Calculate mean and standard deviation of samples as per the formulae given in 5.2.

 $Mean = \frac{(ECR_1 + ECR_2 + \dots + ECR_n)}{n} = 3.253$ Standard Deviation = $\sqrt{\frac{\sum_{i=1}^{n} (ECR_i - mean)^2}{n-1}} = 0.179$

Where ECR_1 , ECR_2 ... ECR_n are weighted ECR values of samples.

- (iv) Finding reference ECR values from samples passport designation; Ref _ECR_Val1= (mean-standard deviation) =3.073 Ref _ECR_Val2= (mean)=3.253 Ref _ECR_Val3= (mean+standard deviation)=3.432
- (v) Energy Passport for samples: (a) Class A or colour Green- if measured weighted ECR value is less than Ref_ECR_val1; (b) Class B or colour Lime- if measured weighted ECR value is less than Ref_ECR_val2 but equal to more than Ref_ECR_val1; (c) Class C or colour Amber- if measured weighted ECR value is less than Ref_ECR_val3 but equal to or more than Ref_ECR_val2; (d) Class D or colour RED- if measured weighted ECR value is equal or more than Ref_ECR_val3;

S	amples>	S1	S2	S3	S4	S5
	EP	Class B	Class D	Class C	Class A	Class C

(vi) Designation of EP on the tested samples:

ECR=3.140	ECR=3.454	ECR=3.265	ECR=3.014	ECR=3.391
-----------	-----------	-----------	-----------	-----------

Table 27 Energy Passport Awarded

(Not an integral part of the document)

List of Equipment to be covered in future issues

The following Telecom Equipment, Telecom Networks and Telecom Services are left out in this document which may be added in future version of the document.

A. Category-Under Telecom Equipment

- i. Radio Access Control Equipment-Base Station Controller (BSC)
- ii. IMS core functions (BGCF, CSCF, HSS, IBCF, MRFC, MRFP, SLF and LRF)
- iii. Any other new equipment not covered in this document

B. Under Telecommunication Networks

- i. Telecommunication (TLC) fixed networks,
- ii.
- iii. Any other new network not covered in this document

C. Under Telecom Infrastructure at equipment level and network level

- i. Battery
- ii. Data Centers
- iii. IP sites
- iv. Telecom facility
- v. Any other new equipment/site

END OF DOCUMENT